T4 ( f , x , 0 )
soll vermutlich das Taylorpolynom 4. Grades von f ( x ) an der Entwicklungsstelle a = 0 sein.
Dies schreibt man in der Regel so:
$${ T }_{ n }f(x,a)$$
Es gilt:
$${ T }_{ n }f(x,a)=\sum _{ k=0 }^{ n }{ \frac { { f }^{ (k) }(a) }{ k! } { \left( x-a \right) }^{ k } }$$
wobei f ( n ) die n-te Ableitung von f bezeichnet.
Für n = 4 und a = 0 ergibt sich daraus:
$${ T }_{ 4 }f(x,0)=\sum _{ k=0 }^{ 4 }{ \frac { { f }^{ (k) }(0) }{ k! } { x }^{ k } }$$$$=\frac { { f }^{ (0) }(0) }{ 0! } { x }^{ 0 }+\frac { { f }^{ (1) }(0) }{ 1! } { x }^{ 1 }+\frac { { f }^{ (2) }(0) }{ 2! } { x }^{ 2 }+\frac { { f }^{ (3) }(0) }{ 3! } { x }^{ 3 }+\frac { { f }^{ (4) }(0) }{ 4! } { x }^{ 4 }$$$$=f(0)+{ f }^{ (1) }(0)x+\frac { { f }^{ (2) }(0) }{ 2 } { x }^{ 2 }+\frac { { f }^{ 3) }(0) }{ 6 } { x }^{ 3 }+\frac { { f }^{ (4) }(0) }{ 24 } { x }^{ 4 }$$
Es sind also die Werte der nullten bis vierten Ableitung von f an der Stelle a = 0 zu berechnen und in diese Formel einzusetzen. Das schaffst du doch, oder?
Zur Kontrolle:
WolframAlpha ermittelt:
$${ T }_{ 4 }f(x,0)=1+3x+\frac { 3x^{ 2 } }{ 2 } -\frac { 3x^{ 3 } }{ 6 } +\frac { 9x^{ 4 } }{ 24 }$$$$=1+3x+\frac { 3x^{ 2 } }{ 2 } -\frac { x^{ 3 } }{ 2 } +\frac { 3x^{ 4 } }{ 8 }$$