Thm A. The quotient ring $\mathbf{R}[x]/\langle (x^2+1) \rangle$ is isomorphic to the field **C**.

Proof: Consider the map $\psi : \mathbf{R}[x] \to \mathbf{C}$ defined by $\psi(p(x)) = p(i)$.

Since $\psi(a+bx) = a+bi$ (for any real numbers a and b) it is clear that ψ is surjective. Since $\psi(p(x) + q(x)) = p(i) + q(i) = \psi(p(x)) + \psi(q(x))$ and $\psi(p(x)q(x)) = p(i)q(i) = \psi(p(x))\psi(q(x))$, it follows that ψ is a homomorphism.

Now the kernel of ψ is the set of all polynomials $p(x) \in \mathbf{R}[x]$ such that p(i) = 0. Note that (for real polynomials) p(i) = 0 iff p(-i) = 0 (since *complex* roots of *real* polynomials always come in conjugate pairs). Thus p(i) = 0 iff p(x) is divisible by (x - i) and (x + i) (by the Factor Fheorem). Since (x - i) and (x + i) are irreducible, any polynomial divisible by both of them is divisible by their product $(x^2 - i^2) = (x^2 + 1)$. Thus the kernel of ψ is just the set $\langle (x^2 + 1) \rangle$ of polynomials divisible by $x^2 + 1$.

By the First Isomorphism Theorem, we have proved that $\mathbf{R}[x]/\langle (x^2+1)\rangle$ is isomorphic to the field of complex numbers. \Box

Thm B. The quotient ring $\mathbf{R}[x]/\langle (x^2-1) \rangle$ is isomorphic to the ring $\mathbf{R} \times \mathbf{R}$.

Proof: Consider the map $\chi : \mathbf{R}[x] \to \mathbf{R} \times \mathbf{R}$ defined by $\chi(p(x)) = (p(1), p(-1))$.

Since $\chi\left(\frac{a+b}{2} + \frac{a-b}{2}x\right) = (a,b)$ (for any real numbers a and b) it is clear that χ is surjective.

Since $\chi(p(x)+q(x)) = (p(1)+q(1), p(-1)+q(-1)) = (p(1), p(-1)) + (p(-1), q(-1)) = \chi(p(x)) + chi(q(x))$ it is clear that χ is a homomorphism.

Now the kernel of ψ is the set of all polynomials $p(x) \in \mathbf{R}[x]$ such that p(1) = 0 and p(-1) = 0 (since the zero element in the ring $\mathbf{R} \times \mathbf{R}$ is (0,0)). Thus (again by the Factor Theorem), the kernel is the set of polynomials which are divisible by both x - 1 and x + 1. In other words, the kernel is the set of polynomials in $\mathbf{R}[x]$ which are multiples of $x^2 - 1$, namely the ideal $\langle (x^2 - 1) \rangle$.

By the First Isomorphism Theorem, we have proved that $\mathbf{R}[x]/\langle (x^2-1)\rangle$ is isomorphic to the ring $\mathbf{R} \times \mathbf{R}$. \Box

Thm C. Let I be the ideal in $\mathbb{Z}[x]$ defined by $I = \{p(x) \in \mathbb{Z}[x] \mid p(0) \in 2\mathbb{Z}\}$. Then $\mathbb{Z}[x]/I$ is isomorphic to the field \mathbb{Z}_2 . Thus I is a maximal ideal in $\mathbb{Z}[x]$.

Proof: Note that \mathbf{Z}_2 is shorthand for $\mathbf{Z}/2\mathbf{Z}$.

Let $\alpha : \mathbf{Z}[x] \to \mathbf{Z}$ be defined by $\alpha(p(x)) = p(0)$, and let $\beta : \mathbf{Z} \to \mathbf{Z}_2$ be the natural homomorphism defined by $\beta(n) = \begin{cases} 0 & \text{if } n \text{ is even} \\ 1 & \text{if } n \text{ is odd.} \end{cases}$. Since α is easily shown to be a homomorphism (and we already know that the natural map β is a homomorphism), the composition $\beta \circ \alpha$ is a homomorphism from $\mathbf{Z}[x]$ to \mathbf{Z}_2 . Clearly $\beta \circ \alpha$ is surjective.

Now the kernel of α is 2**Z** so the kernel of $\beta \circ \alpha$ is the set of polynomials $\{p(x) | \alpha(p(x)) \in 2\mathbf{Z}\} = \{p(x) | p(0) \in 2\mathbf{Z}\} = I$. Thus we have met the conditions for the First Isomorphism Theorem (using the composition homomorphism $\beta \circ \alpha$), and proved the desired result. \Box