Aufgabe:
Berechnen Sie das Integral
\( \iint_{A} f(x, y) \mathrm{d}(x, y) \)
für die angegebenen Abbildungen und Integrationsbereiche:
\( A=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 x^{2}+y<4\right\} \) und \( f(x, y)=y^{2} \).
Problem/Ansatz:
Welchen Weg gibt es hier, um die Integrationsintervallgrenzen x&y zu berechnen ?
Idee: Nullstellen der Funktion \( 4 x^{2}+y<4 \) nach x oder wenn das mal in einer anderen Aufgabe nicht geht, dann nach y. Im besten Fall findet man so beide Integrationsgrenzen und wenn man nur eine findet, wie hier -1≤x≤1, dann nimmt man im Doppelintegral die x-Werte als Grenzen außen und die Funktion nach y umgestellt als Grenze. Aber dann weiß ich nicht, wie das mit dem Ungleich als Grenze funktioniert und wie die zweite Grenze des inneren Integrals ist.
Also, wie würdet ihr da ran gehen? Am besten ohne aufmalen, sondern mit Rechnung, falls schwierigere Funktionen als Intervalleinschränkung in der Klausur ran kommen.
Vielen Dank für eure Antworten :)