Benutze die Dichtefunktion \(f(x)=\lambda \mathrm{e}^{-\lambda x}\) und die Definition von \(P(X\leq x)\) und löse die Gleichung \(P(X<1)=2P(X>1)\), also
\(\int_0^1 \!\lambda \mathrm{e}^{-\lambda x}\,\mathrm{d}x = 2 \int_1^\infty \!\lambda \mathrm{e}^{-\lambda x} \,\mathrm{d}x\)
und bestimmte den Parameter \(\lambda\). Die Formel für die Varianz kennst du hoffentlich. Ansonsten schlage sie nach.