\(x^2-x-a²(a²+1)=0\)
Lösungsweg ohne p,q Formel:
\(x^2-1x=a^2(a^2+1)\)
\(x^2-\red{1}x+(\frac{\red{1}}{2})^2=a^2(a²+1)+(\frac{\red{1}}{2})^2\)
\((x-\frac{\red{1}}{2})^2=a^4+a^2+\frac{1}{4}=\frac{4a^4+4a^2+1}{4}=\frac{(2a^2+1)^2}{4} |±\sqrt{~~}\)
\(1.)\)
\(x-\frac{\red{1}}{2}=\frac{2a^2+1}{2}=a^2+\frac{1}{2} \)
\(x_1=a^2+1 \)
\(2.)\)
\(x-\frac{\red{1}}{2}=-a^2-\frac{1}{2} \)
\(x_2=-a^2 \)