Aloha :)
Das lokale Maximum bei \(\left(e\big|\frac1e\right)\) hast du richtig bestimmt.
Die Ableitung der Funktion lautet jedoch:$$f'(x)=\frac{1-\ln(x)}{x^2}$$Für \(x>e\) ist sie negativ, d.h. für \(x>e\) ist die Funktion streng monoton fallend.
Für \(x<e\) ist positiv, d.h. für \(x<e\) ist die Funktion streng monoton steigend.
Daher muss das lokale Maximum bei \(x=e\) sogar das globale Maximum sein.
Da der Definitionsbereich \(x\in(0|e^2]\) lautet, findest du bei \(x=e^2\) noch ein lokales Randminimum (die Funktion ist ja für \(x>e\) streng monoton fallend), das du mit den Mitteln der Differentialrechnung nicht ermitteln kannst, da die Funktion für \(x=e^2\) nicht differenzierbar ist (es existeirt kein rechtsseitiger Grenzwet des Differenzenquotienten).
Wegen \(\lim\limits_{x\to0}f(x)=-\infty\) gibt es kein Randminimum am linken Rand, die Funktion ist für \(x=0\) ja auch gar nicht definiert.