a) f(x) = x √((1-x)/(1+x)), hier liegt eine Verknüpfung von x und einer Wurzelfunktion vor, allerdings ist der Term unter Wurzel ein Quotient, bei dem sowohl im Zähler als im Nenner die Variable x vorkommt.
1. Ableitung geht über die Produktregel:
u = x
v = √((1-x)/(1+x))
u' = 1
v' mit Kettenregel (äußere * innere Ableitung), wobei wir für die innere Ableitung noch die Quotientenregel beachten müssen; Ableitung für Wurzelfunktion allgemein: f(x) = √x = x1/2 - > f'(x) = 1/2*x(-1/2) = 1/(2*√x), für den Quotienten gilt n = (1-x) -> n' = -1 und z = 1+x -> z' = 1
v' = 0,5*(1-x)/(1+x))-1/2*((-1)*(1+x)-1*(1-x)/((1+x)2)) = 0,5*(1-x)/(1+x))-1/2*(-1-x-1+x)/((1+x)2) = 0,5*(1-x)/(1+x))-1/2*(-2)/(1+x)2
f'(x) = u'v + uv' = 1*√((1-x)/(1+x)) + x*0,5*(1-x)/(1+x))-1/2*(-2)/(1+x)2 = √((1-x)/(1+x)) - x*(1-x)/(1+x))-1/2*)/(1+x)2 = √((1-x)/(1+x)) - x/(√((1-x)/(1+x))*(1+x)2)
b) f(x)= √((1)+(1/√x))
f'(x)=( -0,5*/(√((1)+(1/√x)))) * (-0,5*x(-3/2)) und den Rest schaffst alleine .-)