allgemein ist der Definitionsbereich einer reellen Funktion alle reellen Zahlen die du einsetzen darfst! "Einsetzen dürfen" bezieht sich dabei darauf, ob die Funktion für diese Zahlen definiert ist. Beispielsweise "darf" man bei der Funktion: \(f(x) = \frac{1}{x} \) nicht \( x = 0 \) einsetzen, da \(\frac{1}{0} \) nicht definiert ist. Ansonsten aber jede andere beliebige reelle Zahl. Mathematisch ausgeschrieben wäre dies: \( D_f = \mathbb{R} \setminus \{0\} \) (gelesen: Der Definitionsbereich sind alle reelle Zahlen außer die Null).
Der Wertebereich sind alle möglichen Ergebnisse die beim einsetzen der Zahlen aus dem Definitionsbereich rauskommen können.
Konkret für dein Beispiel: \( f(x) = x^2\)
\( D_f = \mathbb{R} \) -> man darf nämlich alle reelle Zahlen einsetzen.
Zum Wertebereich: Beim quadrieren kommt immer eine positive Zahl raus, zusätzlich gibt es für jede positive reelle Zahl mindestens eine "Wurzel" die quadriert diese Zahl ergibt.
Der Wertebereich wäre also \(W_f = \mathbb{R}^+_0 \) wobei hier das Zeichen bedeutet: Alle reellen Zahlen größer gleich 0.
Gruß