Brechnen Sie die Nullstellen folgender Funktionsschar.
fa(x) = √(ax) - (1/2)x2
√(ax) - (1/2)x2 = 0
√(ax) = 1/2x2
ax = 1/4 x4
x4 - 4ax = 0
x• (x3 - 4a) = 0
x = 0 oder x3 = 4a
x=0 oder x = - 3√ (4•|a|) für a <0 bzw. x = 3√(4a) für a≥0
@WolfgangVerständnisfrage:3√ a geht doch eigentlich immeregal ob a positiv oder negativ ist. x = 3√(4a) als Ergebnis würde dann stets zutreffen.
georgborn: Schau mal hier: https://de.wikipedia.org/wiki/Wurzel_(Mathematik)#Wurzeln_aus_negativen_Zahlen
" Diese Festlegung ist mit manchen Eigenschaften der Wurzeln, die für positive Radikanden gelten, nicht vereinbar. "
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos