(b - 1)·b·x^{b - 2}·x^2 - (b - 1)·b·x^{b - 2}·x^3 + 4·b·x^{b - 1}·x - 2·b·x^{b - 1}·x^2 + 2·x^b + 2·x^b·x = 0
(b - 1)·b·x^b - (b - 1)·b·x^b·x + 4·b·x^b - 2·b·x^b·x + 2·x^b + 2·x^b·x = 0
x^b·((b - 1)·b - (b - 1)·b·x + 4·b - 2·b·x + 2 + 2·x) = 0
x^b·(- b^2·x - b·x + 2·x + b^2 + 3·b + 2) = 0
- b^2·x - b·x + 2·x + b^2 + 3·b + 2 = 0
b^2·(1 - x) + b·(-x + 3) + 2·x + 2 = 0
durch (1 - x) teilen
b^2 + b·(x - 3)/(x - 1) - (2·x + 2)/(x - 1) = 0
pq-Formel
b = -(x - 3)/(2x - 2) +- √(((x - 3)/(2x - 2))^2 + (2·x + 2)/(x - 1))
b = -(x - 3)/(2x - 2) +- (3·x - 1)/(2x - 2)
b1 = - (x - 3)/(2·x - 2) + (3·x - 1)/(2·x - 2) = (x + 1)/(x - 1)
b2 = -(x - 3)/(2x - 2) - (3·x - 1)/(2x - 2) = -2