Ich habe einen Aufgabenzettel meiner Tochter bekommen und bin ratlos.... Kann mir jemand bitte helfen?
Vielen herzlichen Dank!
Frank
https://de.wikipedia.org/wiki/Teilerfremdheit notiert unter "Eigenschaften" die herzuleitende Wahrscheinlichkeit und in der angegebenen Quelle (Peter Bundschuh: Zahlentheorie) auch einen Beweis nebst Hinweisen auf die originalen Artikel.
(Falls man das Rad nicht unbedingt neu erfinden möchte.)
a/t und b/t sind teilerfremd, wenn ggt[(a/t), (b/t)] = 1 ist daraus folgt:
t * ggt[(a/t), (b/t)] = 1 * t, ggt[a,b] = t
Somit gilt für die Wahrscheinlichkeit:
P [ggt[(a/t), (b/t)] =1] = P [ggt[a,b] =t]. Aber warum ist dann P [ggt[a,b] =t] = x, für x=P(a,b teilerfremd)?
Wo ist mein Denkfehler?
1) Es gilt dass ggT(at,bt)=ggT(a,b)tggT\left(\frac{a}{t}, \frac{b}{t}\right)=\frac{ggT(a,b)}{t}ggT(ta,tb)=tggT(a,b) Davon haben wir dass a/t und b/t teilerfremd sind wenn ggT(at,bt)=1ggT\left(\frac{a}{t}, \frac{b}{t}\right)=1ggT(ta,tb)=1 also wenn t=ggT(a,b)t=ggT(a,b)t=ggT(a,b)
Wir haben dass P(at,bt teilerfremd )=x ⟺ P(ggT(a,b)=t)=xP\left(\frac{a}{t}, \frac{b}{t} \text{ teilerfremd } \right)=x \iff P(ggT(a,b)=t)=xP(ta,tb teilerfremd )=x⟺P(ggT(a,b)=t)=x
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos