Wir klammern die höchste Potenz von den Nenner im Nenner und Zähler aus:
Es gilt dass $$\lim_{x\rightarrow \infty}\frac{1}{x}=0$$
a) $$\lim_{x\rightarrow \infty}\frac{3x}{x^2+1}=\lim_{x\rightarrow \infty}\frac{x^2\left(\frac{3}{x}\right)}{x^2\left(1+\frac{1}{x^2}\right)}=\lim_{x\rightarrow \infty}\frac{\frac{3}{x}}{1+\frac{1}{x^2}}=\frac{0}{1+0}=0$$
b) $$\lim_{x\rightarrow \infty}\frac{x^2+1,5x}{2x-1}=\lim_{x\rightarrow \infty}\frac{x\left(x+1,5\right)}{x\left(2-\frac{1}{x}\right)}=\lim_{x\rightarrow \infty}\frac{x+1,5}{2-\frac{1}{x}}=\frac{\infty+1,5}{2-0}=\infty$$