Wenn ein Term sich vereinfacht, so bedeutet dies i.A. dass sich Ausdrücke kürzen lassen oder Differenzen zu 0 werden. Und da wir hier im Wesentlichen Produkte haben, ist kürzen angeagt. Deshalb ist es auch nicht ratsam, die Terme aus zu multiplizieren. Suche lieber nach gleichen Termen.
$$\left[ \left( \frac{3x^2}{x(x-y)} \right)^{-3} \cdot \left( \frac{3^2(x-y)^2}{2^3 y^{-3}} \right)^2\right]:\frac{(2x)^{-3}}{5(x-y)}$$
ich habe schon mal was ausgeklammert, da z.B. \((x-y)\) mehrfach vorkommt. Jetzt könnte man alles auf Bruchstriche schreiben - das wird aber unübersichtlich. Ich schreibe daher lieber jeden einzelnen Term mit genau dem Exponenten hin, so dass er im Zähler zu stehen kommt - damit fallen alle Brüche raus:
$$= \left(3^{-3} x^{-6} \cdot x^3 (x-y)^3 \right) \cdot \left(3^4(x-y)^4 \cdot 2^{-6}y^6 \right) \cdot \left(2^3x^3 \cdot 5(x-y) \right)$$ Die äußeren Klammern habe ich nur wegen der Übersicht gesetzt, damit Du besser siehst wo was herkommt. Die kann man direkt weglassen. Jetzt nur noch sortieren:
$$= 3^{(-3+4)} \cdot x^{(-6+3+3)} \cdot (x-y)^{(3+4+1)} \cdot 2^{(-6+3)} \cdot y^{6} \cdot 5$$
$$=3 \cdot 1 \cdot (x-y)^{8} \cdot 2^{-3} \cdot y^6 \cdot 5=\frac{15}{8}(x-y)^{8}y^6$$
.. und jetzt hoffen wir mal, dass ich mich nicht vertan habe. Aber das Prinzip sollte klar sein.