Ich hab das mal stichprobenartig so überflöogen; es scheint richtig zu sein. Allerdings. Matrelounge ist dafür nicht zuständig, weil du alle drei Formen
a) die primitive Form
b) die Normalform und die
c) faktorisierte Form
bei Wolfram eintipseln kannst. Schon mal von wolframalpha gehört? Den kannst du echt zudröhnen mit deinen ganzen Hausaufgaben und Strafarbeitzen; die Lösungen sind garantiert richtig .#
Wir werde erst wieder zuständig, wenn dir der WEG zur Lösung unklar sein sollte. Gerade Wolfram setzt gelegentlich beim Benutzer doch eine nicht unerhebliche Intellenz voraus.
Trotzdem möchte ich dir paar Dinge mitteilen für deinen späteren Lebensweg. Du weißt, dass die Großen der Physik irgendwann dahinter kamen, dass es ZWEI vorzeichen für die elektrische Ladung gibt; Plus und Minus. An sich kannst du diese Vorzeichen ja willkürlich vergeben - bloß hinterher stelltze sich heraus, dass man es falschrum gemacht hatte. Weil die ( physikalische ) Stromrichtung geht ja von Plus nach Minus
( Darauf bezieht sich alles; die Rechte_Hand_Regel; oder elektrische Feldlinienh entspringen auch in Plus und münden in Minus. )
Aber Elektronen fließen eben von MINUS nach PLUS _ Pech gehabt ...
Genau so hier; im Rahmen meiner bisherigen Aktivitäten zeichnet sich eben ab, dass quadratische Gleichungen ( QG ) mit dem faalschen Vorzeichen notiert sind; die Normalform definiere ich grundsätzlich
f ( x ) := x ² - p x + q ( 1 )
Also bei mir heißt es MINUS p Dies ist die zentrale Stelle, an der du zu drehen hast. Denn dann sehen die Vietaformeln auf einmal symmetrisch aus
p = x1 + x2 ( 2a )
q = x1 x2 ( 2b )
Weiter im Text; hattet ihr schon die Mitternachtsformel ? Plötzlich löst sich dieses lästige Minuszeichen in Luft auf:
x1;2 = 1/2 p +/- sqr [ ( p/2 ) ² - q ] ( 3 )
Nein das ist noch nicht alles. Ich schmeichle mir nämlich, der Entdecker der ersten und zweiten ===> Alfonsinischen pq-Formel ( AF1 und AF2 ) zu sein ( Weil ich fand es irgendwie witzig, sie zu benennen nach der Romanfigur König Alfons 3/4 XII von Lummerland. )
Die AF sind übrigens aufs Engste verknüpft mit Vieta; solltest du nähere Auskünfte benötigen - jeder Zeit. Und mit Vieta kommt natürlich wieder der bewusste Vorzeichendreher analog ( 2a ) ins Spiel, weil sich die AF1 unmittelbar auf die Vorzeichenkonvention in ( 2a ) bezieht.
( Mein Chef hätte gesagt; warum mach ich's nicht gleich richtig? )
Dazu kommen noch einige Formeln über biquadratische Gleichungen, die sich selbst redend alle auf das Vorzeichen in ( 1 9 beziehen ...
Aber nur um dir mal zu zeigen, was für schlaue Leute dass es gibt. Schon mal gehört vom ===> Satz von der rationalen Nullstelle ( SRN ) ?
Weil für ein normiertes Polynom macht der die aussage: Seine Wurzeln müssen ganzzahlig sein. Ich führ dir das jetzt mal vor für dein Polynom Nr. a in der Normalform ( 1 ) ; hier war q = 42 . Gemäß Vieta ( 2b ) musst du dir sämtliche Zerlegungen der 42 überlegen; die Primfaktorenzerlegung der 42 lautet 42 = 2 * 3 * 7 . Du das geht jetzt streng nach ===> Binominalstatistik; ( 3 0 ) = 1 triviale Zerlegung
x1 = 1 ; x2 = 42 ; p = 43 ( 4a )
Und dann ( 3 1 ) = 3 Zerlegungen mit einem Primfaktor
x1 = 2 ; x2 = 3 * 7 = 21 ; p = 23 ( 4b )
x1 = 3 ; x2 = 2 * 7 = 14 ; p = 17 ( 4c )
x1 = 2 * 3 = 6 ; x2 = 7 ; p = 13 ( 4d ) ; ok
Halt Stop; eigentlich hätten wir uns in ( 2b ) noch über das Vorzeichen Gedanken machen müssen, weil ja " Minus Mal Minus " auch Plus ergibt.
Dafür gibt es die cartesische Vorzeichenregel; " zwei Mal Plus " . Alles paletti.
QG stellen sich völlig überraschend als " quantisiert " heraus.
Und wenn nun p keinen der Werte von ( 4a-d ) annimmt? Dann hast du zum erstenmal verstanden, dass nur irrationale Lösungen, " kaputtene " Mitternachtswurzeln, in Frage kommen ...
Falls weiter hin Interesse bestehen sollte, dass ich dir ein weiteres Beispiel vorrechne, musst du dich nur melden.