\(f(x) = 4x^2+ 3x + 2\) \(g(x) = -3x+c\)
\( 4x^2+ 3x + 2=-3x+c\)
\( 4x^2+ 6x =c-2\)
\( x^2+ 1,5x =\frac{c-2}{4}\)
\( x^2+ 1,5x+(\frac{1,5}{2})^2 =\frac{c-2}{4}+(\frac{1,5}{2})^2\)
\( (x+\red{0,75})^2 =\frac{c-2}{4}+(0,75)^2\)
Der Berührpunkt liegt nun an der Stelle \(x=-0,75\)
\(f(-0,75)=2\)
c berechnen:
\( \sqrt{\frac{c-2}{4}+(0,75)^2}=0\)
\(c=-\frac{1}{4}\)
Tangente:
\(t(x) = -3x-\frac{1}{4}\)