0 Daumen
1,1k Aufrufe

Kann man die 1 bei 1:(1+2h+h) kürzen?

Aufgabe: alles steht da

Avatar von

@h-Methode. Am Schluss lässt man h gegen 0 gehen. (Grenzübergang).

D.h.

Kann man die 1 bei 1:(1+2h+h) kürzen?

 1:(1+2h+h) → 1:(1+0+0) = 1/1 = 1 , für lim_(h->0). 

1 Antwort

+1 Daumen

Durch was willst du denn die 1 kürzen ? Durch 1 ?

Kürzen bedeutet Zähler und Nenner eines Bruches durch die gleiche Zahl teilen.

Du kannst nur h zusammenfassen. Mehr nicht

1:(1+2h+h) = 1:(1+3h)

Avatar von 489 k 🚀

ich hab halt  ein problem bei der h-methode (berechnung von f´(1)) für x^-2

f´=(f(x+h)-f(x)):h und wenn man alles einsetzt, dann hat man den bruch oben und ich komm nicht weiter, weil ich nicht weiß, wie ich das h da rausbekomm :(

Ok.

$$ f(x)=x^{-2}=\frac{1}{x^2}\\f'(x) = \lim\limits_{h \to 0} \frac{f(x+h) - f(x)}{h}\\ f'(x) = \lim\limits_{h \to 0} \frac{\frac{1}{(x + h)^2} - \frac{1}{x^2}}{h}\\ f'(x) = \lim\limits_{h \to 0} \frac{\frac{x^2}{x^2 \cdot (x + h)^2} - \frac{(x + h)^2}{x^2 \cdot (x + h)^2}}{h}\\ f'(x) = \lim\limits_{h \to 0} \frac{\frac{x^2 - (x + h)^2}{x^2 \cdot (x + h)^2}}{h}\\ f'(x) = \lim\limits_{h \to 0} \frac{\frac{x^2 - (x^2 + 2 \cdot x \cdot h + h^2)}{x^2 \cdot (x + h)^2}}{h}\\ f'(x) = \lim\limits_{h \to 0} \frac{\frac{x^2 - x^2 - 2 \cdot x \cdot h - h^2}{x^2 \cdot (x + h)^2}}{h}\\ f'(x) = \lim\limits_{h \to 0} \frac{\frac{- 2 \cdot x \cdot h - h^2}{x^2 \cdot (x + h)^2}}{h}\\f'(x) = \lim\limits_{h \to 0} \frac{- 2 \cdot x - h}{x^2 \cdot (x + h)^2}\\ f'(x) = \lim\limits_{h \to 0} \frac{- 2 \cdot x - h}{x^2 \cdot (x + h)^2} = \frac{- 2 \cdot x}{x^2 \cdot x^2} = \frac{- 2}{x^3} = -2 \cdot x^{-3} $$

m = (x2/(x2·(x + h)2) - (x + h)2/(x2·(x + h)2)) / h? wo kommt das x^2 her am anfang und wo ist die 1, ich fühl mich etwas dumm :/

1/(x + h)^2 - 1/x^2

Um Brüche zu Subtrahieren muss man sie gleichnamig machen.


a/b - c/d = ad/(bd) - bc/(bd) = (ad - bc)/(bd)

oder

1/b - 1/d = (d - b)/(bd)

Das kannst du so prima anwenden.

Was hast du denn genau gemacht.. so einfach wie im Video siehts nicht aus. Sorry, dass ich so dumm Frage, bin echt verzweifelt, weil mir mathe sonst gut liegt....

Vielleicht siehst du das so besser

1/b - 1/d = (d - b)/(bd)

mit b = (x + h)^2 und d = x^2

1/(x + h)^2 - 1/x^2 = (x^2 - (x + h)^2)/((x + h)^2*x^2)

Wenn nicht können wir das mal zusammen an einem Whiteboard durchrechnen.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community