0 Daumen
836 Aufrufe

Folgende Funktionen nach x ableiten.

Komme bei denen nicht weiter, gerne Hilfe beim Rechenweg.


z2

(x0,75-12x·x·x2+3x)

x2/e-2

Avatar von

2 Antworten

0 Daumen
 
Beste Antwort

Aloha :)

$$\left(z^2\right)'=0\quad\text{denn \(z^2\) ist aus Sicht von \(x\) eine Konstante.}$$$$\left(x^{0,75}-12x\cdot x\cdot x^2+3x\right)'=\left(x^{0,75}-12x^4+3x\right)'$$$$\qquad=0,75x^{0,75-1}-12\cdot4x^{4-1}+3\cdot1x^{1-1}=0,75x^{-0,25}-48x^3+3$$$$\left(\frac{x^2}{e^{-2}}\right)'=\left(x^2\cdot e^2\right)'=e^2\cdot\left(x^2\right)'=e^2\cdot2x^{2-1}=2e^2x$$

Avatar von 152 k 🚀

Dankeschön :)

0 Daumen

z2 kann man nicht nach x ableiten, außer es ist eine Funktion von x.
(x0,75-12x·x·x2+3x)=x0,75-12x4+3x

abgeleitet: 0,75x-0,25-48x3+3

x2/e-2=x2·e2
abgeleitet: 2e2·x  

Avatar von 123 k 🚀

Besten Dank :)

z2 kann man nicht nach x ableiten, außer es ist eine Konstante. Die bleibt beim Ableiten stehen.

Das meinst du nicht wirklich ...   :-)

Na gut, wenn z eine Funktion von x ist, kann man es natürlich doch nach x ableiten.

Ein konstanter Faktor bleibt erhalten, ein konstanter Summand verschwindet.

Du hast recht.

Ein anderes Problem?

Stell deine Frage

Keine ähnlichen Fragen gefunden

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community