Aloha :)
$$\left.4\cdot\log_3(5x-1)=\log_3(40x+1)\quad\right|\quad\text{Verwende }a\cdot\log(b)=\log(b^a)$$$$\left.\log_3((5x-1)^4)=\log_3(40x+1)\quad\right|\quad3^{\cdots}$$$$\left.(5x-1)^4=40x+1\quad\right|\quad\text{binomischer Lehrsatz}$$$$\left.(5x)^4-4\cdot(5x)^3+6\cdot(5x)^2-4\cdot(5x)+1=40x+1\quad\right|\quad\text{ausrechnen}$$$$\left.625x^4-4\cdot125x^3+6\cdot25x^2-4\cdot5x+1=40x+1\quad\right|\quad\text{ausrechnen}$$$$\left.625x^4-500x^3+150x^2-20x+1=40x+1\quad\right|\quad-40x-1$$$$\left.625x^4-500x^3+150x^2-60x=0\quad\right|\quad\div5$$Wir erkennen sofort die Lösung \(x=0\). Jedoch darf \(x=0\) nicht in die ursprüngliche Gleichung eingesetzt werden, weil \(\log_3(-1)\) nicht definiert ist. Wir können daher beide Seiten der Gleichung durch \(x\ne0\) dividieren, ohne dabei eine mögliche Lösung zu verlieren:$$\left.125x^3-100x^2+30x-12=0\quad\right.$$Diese Gleichung brauchst du in der Regel nicht zu lösen, dafür sind Hilfsmittel erlaubt, etwa ein Taschenrechner oder ein CAS. Als Lösung kommt heraus:$$x\approx0,65709$$