\( \iiint_{R} \frac{z}{(x+y)^{2}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z, \quad R=[1,2] \times[1,2] \times[0,2] \)
\( \int \limits_{0}^{2}\int \limits_{1}^{2}\int \limits_{1}^{2}\frac{z}{(x+y)^{2}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \)
\(= \int \limits_{0}^{2}\int \limits_{1}^{2}\frac{z}{y+1}-\frac{z}{y+2} \mathrm{~d} y \mathrm{~d} z \)
\(= \int \limits_{0}^{2}ln(\frac{9}{8})*z \mathrm{~d} z =2*ln(\frac{9}{8}) \)