Wir betrachten die Basis \( \mathcal{B}=\left(b_{1}, b_{2}, b_{3}\right) \) des \( \mathbb{R}^{3} \) mit
$$ b_{1}=\left(\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right), \quad b_{2}=\left(\begin{array}{l} 0 \\ 1 \\ 1 \end{array}\right), \quad b_{3}=\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right) $$
Sei \( f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \) diejenige lin eare Abbildung, die
$$ f\left(b_{1}\right)=b_{2}, \quad f\left(b_{2}\right)=b_{3}, \quad f\left(b_{3}\right)=b_{1} $$
erfüllt.
Wie kann ich hier M e nach e bestimmen?