Aloha :)
Die Buchautoren waren hier sehr ungeschickt, weil (a) die schwierigste Aufgabe ist und (c) die leichteste. Daher machen wir (a) etwas ausführlicher, die beiden anderen gehen dann schnell.
zu a) Die Grundfläche ist ein Trapez. Wir tun so, als wäre die Grundfläche ein vollständiges Rechteck mit \(5,4\,\mathrm{cm}\) Breite und \(5,3\,\mathrm{cm}\) Höhe. Davon müssen wir die Fläche des fehlenden Dreiecks links mit der Breite \(5,4\,\mathrm{cm}-2,6\,\mathrm{cm}=2,8\,\mathrm{cm}\) und der Höhe \(5,3\,\mathrm{cm}\) subtrahieren.$$G=\underbrace{5,4\,\mathrm{cm}\cdot5,3\,\mathrm{cm}}_{=\text{Rechteckfläche}}-\underbrace{\frac{1}{2}\cdot2,8\,\mathrm{cm}\cdot5,3\,\mathrm{cm}}_{=\text{fehlende Dreieckfläche}}=21,2\,\mathrm{cm}^2$$Für das Volumen müssen wir dann nur noch mit der Tiefe \(6,0\,\mathrm{cm}\) multiplizieren:$$V=G\cdot h=21,2\,\mathrm{cm}^2\cdot6,0\,\mathrm{cm}=127,2\,\mathrm{cm}^3$$
zu b) Der Fall ist einfacher, weil die Grundfläche ein rechtwinkliges Dreieck ist.$$V=\underbrace{\frac{1}{2}\cdot2,4\,\mathrm m\cdot3,2\,\mathrm m}_{=\text{Grundfläche Dreieck}}\cdot\underbrace{4\,\mathrm{m}}_{=\text{Höhe}}=\underbrace{3,84\,\mathrm{m}^2}_{=G}\cdot4\,\mathrm m=15,36\,\mathrm m^3$$
zu c) Das ist der einfachste Fall, hier brauchst du nur alle Maße zu multiplizieren:$$V=\underbrace{32\,\mathrm{cm}\cdot40\,\mathrm {cm}}_{=\text{Grundfläche Rechteck}}\cdot\,\underbrace{18\,\mathrm{cm}}_{=\text{Höhe}}=\underbrace{1280\,\mathrm{cm}^2}_{=G}\cdot18\,\mathrm {cm}=23\,040\,\mathrm {cm}^3$$