Hallo,
betrachte auf dem Maßraum \(([-\pi,\pi], \,\mathcal{B}([-\pi,\pi],\, \lambda^1) \) für alle \(n \in \mathbb{N} \) die stetigen und damit messbaren Funktionen \( f_n:\, [-\pi, \pi] \to \mathbb{R}, \,f_n(x) = \sin^n(x) \).
Dann ist \( \lim\limits_{n\to\infty} f_n(x) = 0 \) für alle \( x\in [-\pi,\pi]\setminus\lbrace{\frac{k\pi}{2}:\,k\in\mathbb{Z}\rbrace} \), also \(\lambda^1\)-fast überall. Da weiter \( |f_n(x)| = |\sin^n(x)| \leq 1 \) für alle \(x\in [-\pi,\pi]\) und \( n\in\mathbb{N} \) und \(\int_{[-\pi,\pi]} 1 \, d\lambda(x)<\infty\), folgt aus dem Satz von Lebesgue
\( \lim\limits_{n\to\infty}\int_{[-\pi,\pi]} \sin^n(x) \, d\lambda(x) \underset{\sin \, \text{stetig}}{\overset{[-\pi,\pi] \,\text{kompaktes Intervall}}{=}} \lim\limits_{n\to\infty}\int_{-\pi}^{\pi} \sin^n(x) \, dx = 0 \)