0 Daumen
604 Aufrufe

Hey,

die $X_{\lambda}$ sind poissonverteilt, könnt ihr mir vielleicht sagen, wie man auf den Erwartungswert bzw. das rosa Unterstrichene kommt? Das $M$ steht hier für Moment-generating function.


Bildschirmfoto 2023-01-13 um 08.53.46.png

Text erkannt:

\( \begin{aligned} \therefore & \lim \limits_{\lambda \rightarrow \infty} M_{\left(\frac{x_{\lambda}-\lambda}{\sqrt{\lambda}}\right)}(t)=\lim \limits_{\lambda \rightarrow \infty} E\left(e^{\left(t \cdot \frac{x_{\lambda}-\lambda}{\sqrt{\lambda}}\right)}\right) \\ \therefore & \lim \limits_{n \rightarrow \infty} M_{\left(\frac{x_{i} \lambda}{\sqrt{\lambda}}\right)}(t)=\lim \limits_{\lambda \rightarrow \infty} e^{-t \sqrt{\lambda}} e^{\lambda\left(e^{(t / \sqrt{\lambda}}-1\right)}\end{aligned} \)

Ich würde mich sehr freuen, wenn mir jemand weiterhelfen könnte.

VG

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

Das sieht nach einem Fehler aus.

Ich nehme mal \(a\) statt \(\lambda\), weil sich das schneller schreiben lässt.

\(x_a\) ist also Poisson-verteilt mit Parameter \(a\). Dann gilt

\(E\left( e^{t\frac{x_a - a}{\sqrt a}} \right) = a \int_0^{\infty} e^{t\frac{x_a - a}{\sqrt a}}\cdot e^{-ax_a}\; dx_a = \frac{a\sqrt a}{a\sqrt a - t}e^{-x_a\sqrt a}\)

Berechnung siehe hier.


Nachtrag zur Integration:

\(a \int_0^{\infty} e^{t\frac{x - a}{\sqrt a}}\cdot e^{-ax}\; dx \stackrel{t\frac{x - a}{\sqrt a}= t\frac x{\sqrt a} - t\sqrt a}{=}  a e^{-t\sqrt a}\int_0^{\infty} e^{t\frac{x}{\sqrt a}}\cdot e^{-ax}\; dx\)

\(= a e^{-t\sqrt a}\int_0^{\infty} e^{x\left(\frac{t}{\sqrt a}-a\right)}\; dx\)

\(  \stackrel{\int_0^{\infty}e^{cx}\;dx =-\frac 1c\: (c<0)}{= } - a e^{-t\sqrt a}\frac 1{\frac{t}{\sqrt a}-a}\)

\( = \frac{a\sqrt a}{a\sqrt a - t}e^{-x\sqrt a}\)

Avatar von 11 k

Hey:)

vielen Dank für deine Antwort. Tut mir leid wenn ich mich jetzt ganz blöd anstelle, aber kannst du vielleicht noch mal sagen, nach welcher Formel du auf das zweite "=" (mit dem Integral) kommst?

Ich ergänz in ein paar Minuten noch einige Integrationsschritte in der Lösung.

Vielen vielen Dank!

Oh sorry, habe das gerade erst gesehen, vielen lieben Dank für deine Mühe! Das hilft sehr!

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community