Es gilt:$$F_Y(x)=P(\max(X_1,...,X_n)\leq x)=P(X_1\leq x \, \land \, X_2\leq x \, \land \, \cdots \land X_n\leq x) \\=P(X_1\leq x)\cdot \ldots \cdot P(X_n\leq x)$$ Das Maximum der \(X_i\) ist also kleiner gleich \(x\), wenn jedes der \(X_i\leq x\).
Und weiter:$$F_Z(x)=P(\min(X_1,...,X_n)\leq x)=1-P(\min(X_1,...,X_n)\geq x) \\=1- P(X_1\geq x \, \land \, X_2\geq x \, \land \, \cdots \land X_n\geq x)\\=1-P(X_1\geq x)\cdot \ldots \cdot P(X_n\geq x)$$ Das Minimum der \(X_i\) ist größer gleich \(x\), wenn alle \(X_i\) größer gleich \(x\) sind. Das sind die ä u ß e r e n Fälle der Ordnungsstatistik.