Weg ohne Substitution:
\( f(x)=\frac{1}{2} x^{4}-x^{2}-1 \)
\(\frac{1}{2} x^{4}-x^{2}-1 =0 \)
\( x^{4}-2x^{2} =2 \)
\( x^{4}-2x^{2} +(\red{\frac{2}{2})^2}=2 +(\red{\frac{2}{2})^2}\)
\( (x^{2}-1)^2=3 |±\sqrt{~~~}\)
1.)
\( x^{2}-1=\sqrt{3} \)
\( x^{2}=1+\sqrt{3} |±\sqrt{~~~} \)
\( x_1= \sqrt{1+\sqrt{3}}≈1,7 \)
\( x_2= -\sqrt{1+\sqrt{3}}≈-1,7 \)
2.)
\( x^{2}-1=-\sqrt{3} \)
\( x^{2}=1-\sqrt{3}|±\sqrt{~~~} \) liegen ∉ ℝ