Sei
$$B=(v_1,\ldots,v_n) \quad B'=(w_1,\ldots,w_m) \quad m,n \in \mathbb{N} \quad (B \times\{0\}) \cup\left(\{0\} \times B^{\prime}\right)=(u_1,\ldots,u_{m+n})$$
$$u_1=(v_1,0),u_2=(v_2,0),\ldots,u_n=(v_n,0),u_{n+1}=(0,w_1),\ldots,u_{m+n}=(0,w_m) $$
Zeige:
$$ \lambda_1u_1+\ldots+\lambda_{m+n}u_{m+n}=0\Leftrightarrow \lambda_1=\ldots=\lambda_{m+n}=0$$
Also:
$$ \lambda_1u_1+\ldots+\lambda_{m+n}u_{m+n}=\lambda_1(v_1,0)+\ldots+\lambda_n(v_n,0)+\lambda_{n+1}(0,w_1)+\ldots+\lambda_{m+n}(0,w_m)$$
$$=(\lambda_1v_1+\ldots+\lambda_nv_n,\lambda_{n+1}w_1+\ldots+\lambda_{m+n}w_m)\stackrel{!}{=}(0,0)$$
Also:
$$\lambda_1v_1+\ldots+\lambda_nv_n=0 \Leftrightarrow \lambda_1=\ldots=\lambda_{n}=0 \quad da \quad B\quad Basis$$
und
$$\lambda_{n+1}w_1+\ldots+\lambda_{m+n}w_m=0 \Leftrightarrow\lambda_{n+1}=\ldots=\lambda_{m+n}=0 \quad da \quad B'\quad Basis$$
Also:
$$\lambda_1=\ldots=\lambda_{m+n}=0$$
LG