Aloha ;)
Du kannst aus jeder der 5 Reihen jeweils den Faktor \((-2)\) vor die Determinante ziehen.
Wegen des Determinanten-Multiplikationssatzes gilt:$$1=\operatorname{det}(E)=\operatorname{det}(A\cdot A^{-1})=\operatorname{det}(A)\cdot\operatorname{det}(A^{-1})\implies\operatorname{det}(A^{-1})=\frac{1}{\operatorname{det}(A)}$$
Damit gilt dann:
$$\operatorname{det}(C)=\operatorname{det}(-2A^{-1}B)=(-2)^5\cdot\frac{\operatorname{det}(B)}{\operatorname{det}(A)}$$