Also du könntest folgendermaßen vorgehen:
Bei einem gleichschenkligen Dreieck sind mindestens zwei Seiten des Dreiecks gleich lang sind. Du hast in deinem Fall nur die Eckpunkte des Dreiecks gegeben, nämlich \( A, B \) und \(C\). Die "Seiten" von diesem Dreieck erhältst du indem du den Vektor zwischen den Punkte bestimmst, d.h. du musst/ solltest \( \vec{AB}, \vec{BC} \) und \( \vec{AC}\) bestimmen. Sobald du das gemacht hast musst du die Länge der Vektoren bestimmen, dazu zeig ich dir ein Beispiel:
Neben wir als Beispiel den Vektor \( \vec{AC} \). Zuerst berechnen wir den Vektor:
Dies machst du so \( \vec{AC} \)\( =C - A = \)\( \begin{pmatrix} 3\\0\\3 \end{pmatrix} \) - \( \begin{pmatrix} 1\\-2\\2 \end{pmatrix} \) = \( \begin{pmatrix} 3 - 1\\0 - (-2)\\3 - 2 \end{pmatrix} \) =\( \begin{pmatrix} 2\\2\\1 \end{pmatrix} \). Nun bestimmen wir die Länge des Vektors \( \vec{AC} \).
Die Länge eines Vektors bestimmt man folgendermaßen: \(| \vec{AC} |\)\( = |\begin{pmatrix} 2\\2\\1 \end{pmatrix} | = \) \( \sqrt{2^{2} + 2^{2} + 1^{2}} \) = \( \sqrt{9} = 3 \). Das heißt der Vektor \( \vec{AC} \) = \( \begin{pmatrix} 2\\2\\1 \end{pmatrix} \) hat die Länge 3. Dasselbe machst du mit dem Vektor \( \vec{BC} \) und \( \vec{AB} \), kommt hier bei einem dieser beiden Vektoren oder aber auch bei beiden ebenfalls eine Länge von 3 raus so weist du, dass das Dreieck gleichschenklig ist. Warum ich sage bei beiden? Denn dann wäre das Dreieck gleichseitig und ein gleichseitiges Dreieck ist automatisch ein gleichschenkliges Dreieck! Hoffe ich konnte dir helfen!