Aufgabe:
Sei \( H \) eine Untergruppe einer Gruppe \( G \) von (endlichem) Index \( n \). Zeige, dass es einen Homomorphismus \( f: G \rightarrow \mathscr{S}_{n} \) mit \( \operatorname{ker}(f) \subseteq H \) gibt.
Problem/Ansatz:
Liege ich richtig, dass ich hier im Grunde die Homomorphiebedingung zeigen muss?
Für alle \( g_{1}, g_{2} \in G \) gilt \( f\left(g_{1} \circ g_{2}\right)=f\left(g_{1}\right) \circ \) \( f\left(g_{2}\right) \)
\( f\left(g_{1} \circ g_{2}\right) \) ist die Permutation \( \sigma_{g_{1} \circ g_{2}} \), die die Nebenklasse \( i H \) auf die Nebenklasse \( \left(g_{1} \circ g_{2}\right) i H \) für \( i=1,2, \ldots, n \) abbildet.
\( f\left(g_{1}\right) \circ f\left(g_{2}\right) \) sind die Permutationen \( \sigma_{g_{1}} \) und \( \sigma_{g_{2}} \), die die Nebenklassen \( i H \) auf die Nebenklassen \( g_{1} i H \) und \( g_{2} i H \) für \( i=1,2, \ldots, n \) abbilden.
Sei \( i \in\{1,2, \ldots, n\} \), dann ist \( \sigma_{g_{1} \circ g_{2}}(i)=j \) genau dann, wenn \( \left(g_{1} \circ g_{2}\right) i H=j H \). Andererseits gilt \( \sigma_{g_{1}}\left(\sigma_{g_{2}}(i)\right)=\sigma_{g_{1}}(j) \), wobei \( j=\sigma_{g_{2}}(i) \) und somit \( j \) das Element ist, auf das \( g_{2} i H \) unter \( g_{1} \) abgebildet wird.
Mit der Verträglichkeit der Gruppenoperationen gilt \( \left(g_{1} \circ g_{2}\right) i H=g_{1}\left(g_{2} i H\right) \), da \( j \) das Element ist, auf das \( g_{2} i H \) unter \( g_{1} \) abgebildet wird, also \( j= \) \( g_{1} g_{2} i H \).
Das bedeutet, dass \( \sigma_{g_{1} \circ g_{2}}(i)=j=\sigma_{g_{1}}\left(\sigma_{g_{2}}(i)\right) \) für alle \( i \in\{1,2, \ldots, n\} \) und daher gilt \( f\left(g_{1} \circ g_{2}\right)=f\left(g_{1}\right) \circ f\left(g_{2}\right) \)
Der Kern \( \operatorname{ker}(f) \) von \( f \) besteht jetzt aus den Elementen \( g \in G \), für die \( \sigma_{g} \) die Identitätspermutation ist. Das bedeutet, dass \( g \) auf jedes Element der Nebenklassen \( i H \) abbildet, weshalb \( g \) in \( H \) liegt. Daher ist \( \operatorname{ker}(f) \subseteq H \)
Kann ich so argumentieren (könnte ich das so auch ohne Nebenklassen machen)?