0 Daumen
379 Aufrufe

image.jpg

Text erkannt:

Aufgaben
1 Berechne zuerst die Grundfläche, dann das Volumen der quadratischen Pyramide. Dabei ist d die Diagonale der Grundfläche.
a) a \( =5 \mathrm{~m} \)
b) \( a=95 \mathrm{dm} \)
\( \mathrm{h}=8 \mathrm{~m} \) \( h=7 \mathrm{~m} \)
c) \( d=10 \mathrm{~m} \)
d) \( h_{\mathrm{s}}=4,5 \mathrm{~m} \)
\( h=12 m \)
\( h=4 \mathrm{~m} \)

Aufgabe:

Avatar von

3 Antworten

0 Daumen

Berechne die Grundfläche. Dafür brauchst du \(a\). Dann kannst du das Volumen berechnen.

Wenn dir bestimmte Größen fehlen, versuche es mal mit dem Satz des Pythagoras. Vergleiche dazu die entsprechenden Abbildungen in deinem Buch.

Avatar von 19 k

Können Sie bitte als Beispiel die a machen

Wo ist denn das Problem beim Einsetzen in die Formel?

0 Daumen
Ich weiß nicht wie die Aufgabe erlöst wird auch wenn ich die Formel habe

Du kannst Dich erlösen, indem Du die gegebenen Werte in die Formel für das Volumen einsetzt.

Bei a) hat die quadratische Grundfläche mit Seitenlänge 5 m einen Flächeninhalt von 25 m2

Avatar von 45 k
0 Daumen

Ich gehe fast davon aus das du die nötigen Formeln, in die du nur einsetzen brauchst auch im Buch findest.

1. a)
a = 5 m ; h = 8 m
G = a² = 25 m²
V = 1/3·G·h = 66.67 m³

1. b)
a = 95 dm = 9.5 m ; h = 7 m
G = a² = 90.25 m²
V = 1/3·G·h = 210.6 m³

1. c)
d = 10 m ; h = 12 m
G = 1/2·d² = 50 m²
V = 1/3·G·h = 200 m³

1. d)
hs = 4.5 m ; h = 4 m
a = 2·√(hs^2 - h^2) = 4.123 m
G = a² = 17 m²
V = 1/3·G·h = 22.67 m³

Avatar von 489 k 🚀

Achso sorry hab es jetzt gecheckt Dankeschön

Solltest du noch Fragen beim Nachrechnen oder beim Verständnis haben, melde dich gerne wieder.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community