Aufgabe 3b, ich habe zwei Ansätze aber ich weiß nicht welcher richtig ist
Text erkannt:
b) Startverteilung für die folgende Woche:
\( x_{1} \cdot A^{-1}=x_{0} \) Abchastis the Matrix coprewe vecteikng bestimen
\( \begin{array}{l} \left(\begin{array}{ll} 500 & 250250 \end{array}\right) \cdot\left(\begin{array}{ccc} 0,5 & 0,25 & 0,25 \\ 0,25 & 05 & 0,25 \\ 0,2 & 0 & 0,8 \end{array}\right) \text { /GTR } \\ \Rightarrow \vec{x}_{1}=\left(\begin{array}{lll} 362,5 & 250 & 387,5 \end{array}\right) \end{array} \)
Startverteilung in der Verwoche:
\( \begin{array}{l} \vec{x}_{1}=\left(\begin{array}{lll} 362,5 & 250 & 387,5 \end{array}\right) \cdot\left(\begin{array}{ccc} 0,5 & 0,25 & 0,25 \\ 0,25 & 0,5 & 0,25 \\ 0,2 & 0 & 0,8 \end{array}\right)^{-1} \text { IGTR } \\ \Rightarrow \vec{x}_{0}=\left(\begin{array}{lll} 500 & 250 & 250 \end{array}\right) \end{array} \)
oder
\( \begin{array}{l} \left(\begin{array}{lll} 500 & 250 & 250 \end{array}\right) \cdot\left(\begin{array}{ccc} 0,5 & 0,25 & 0,25 \\ 0,25 & 0,5 & 0,25 \\ 0,2 & 0 & 0,8 \end{array}\right)^{-1} \text { IGTR } \\ \vec{x}_{0}=\left(\begin{array}{llll} 1000 & 0 & 0 \end{array}\right) \end{array} \)
Text erkannt:
3 Die drei Autowaschanlagen W1, W2 und W3 in Minden haben das Wechselverhalten ihrer Kunden untersucht. Die Kunden von W1 verteilen sich bel der nächsten Autowäsche im Verhältnis \( 2: 1: 1 \) auf die drei Autowaschanlagen. Die Kunden von W2 wechseln das nächste Mal zu \( 25 \% \) zu W1 und zu \( 25 \% \) zu W3. \( 80 \% \) der Kunden von W3 sind der Anlage treu, der Rest wechselt zu W1. Jeder Kunde wäscht sein Auto genau einmal pro Woche.
a) Bestimmen Sie die Übergangsmatrix für diesen Prozess.
b) In einer bestimmten Woche waschen von insgesamt 1000 Autofahrern 500 bei \( W 1 \) und je 250 bei W2 und W3 ihr Auto. Bestimmen Sie die Verteilung in der Vorwoche und für die folgende Woche.
c) Bestimmen Sie die stabile Verteilung und geben Sie die Grenzmatrix an. Ermitteln Sie die langfristige Verteilung, wenn zu Beginn alle Autofahrer ihr Fahrzeug in