0 Daumen
364 Aufrufe

Aufgabe:

Ein Würfel mit 4 und ein Würfel mit 8 Seiten wird gerollt. Bestimmen Sie den Erwartungswert
der folgenden Zufallsvariablen.
(i) X (a, b) = a + b

(ii) X (a, b) = max{a2,b2]      

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

Aloha :)

zu a) Da der Erwartungswert linear ist, bestimmen wir zunächst die einzelnen Erwartungswerte:$$\left<a^2\right>=\frac{1^2+2^2+3^2+4^2}{4}=7,5$$$$\left<b\right>=\frac{1+2+3+4+5+6+7+8}{8}=4,5$$Damit lautet der gesuchte Erwartungswert:$$\left<a^2+b\right>=\left<a^2\right>+\left<b\right>=7,5+4,5=12$$

zu b) Wir stellen uns \(\operatorname{max}(a^2,b^2)\) tabellarisch dar:

$$\begin{array}{c|rrrr}& a^2=1 & a^2=4 & a^2=9 & a^2=16\\\hline\\[-2ex]b^2=1 & 1 & 4 & 9 & 16\\[1ex]b^2=4 & 4 & 4 & 9 & 16\\[1ex]b^2=9 & 9 & 9 & 9 & 16\\[1ex]b^2=16 & 16 & 16 & 16 & 16\\[1ex]b^2=25 & 25 & 25 & 25 & 25\\[1ex]b^2=36 & 36 & 36 & 36 & 36\\[1ex]b^2=49 & 49 & 49 & 49 & 49\\[1ex]b^2=64 & 64 & 64 & 64 & 64\end{array}$$

Der gesuchte Erwartungswert ist daher:$$\left<\operatorname{max}(a^2;b^2)\right>=\frac{1+3\cdot4+5\cdot9+7\cdot16+4\cdot(25+36+49+64)}{32}=\frac{433}{16}$$

Avatar von 152 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community