Aufgabe:
Suche 2 Matrizen \( A, B \in \mathrm{M}(2, \mathbb{C}) \), welche konjugiert sind, das heisst, es gibt eine invertierbare Matrix \( P \in \mathrm{GL}_{n}(\mathbb{C}) \) mit \( P A P^{-1}=B \), aber dennoch nicht unitär konjugiert sind.
Problem/Ansatz:
Sind diese 2 Matrizen richtig? Wenn ja, wie kann man das am besten zeigen? \( A=\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right), \quad B=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right) \)
Besten Danke!