Aloha :)
Das Integral zerfällt in 2 Integrale:$$I=\underbrace{\int\limits_2^3\frac{1}{(x^2+1)^3}\,dx}_{=I_1}+\underbrace{\int\limits_2^3\frac{\frac1x}{\ln(x)}\,dx}_{=I_2}$$
Das 2. Integral ist ein Standardintegral, denn die Ableitung des Nenners steht im Zähler:$$\int\frac{f'(x)}{f(x)}\,dx=\ln|(f(x)|+\text{const}\quad\implies$$$$I_2=\left[\ln|\ln(x)|\right]_2^3=\ln(\ln3)-\ln(\ln2)=\ln\left(\frac{\ln3}{\ln2}\right)$$
Im 1, Integral substituieren wir:$$x=\tan u\implies \frac{dx}{du}=1+\tan^2u=1+x^2\implies du=\frac{dx}{1+x^2}$$und erhalten dann folgendes Integral:$$I_1=\int\limits_2^3\frac{1}{(x^2+1)^2}\cdot\frac{dx}{x^2+1}=\int\limits_{\arctan(2)}^{\arctan(3)}\frac{1}{(\tan^2u+1)^2}\,du=\int\limits_{\arctan(2)}^{\arctan(3)}\cos^4(u)\,du$$
Den Term \(\cos^4(u)\) formen wir vor dem Integrieren etwas um:$$\cos^4(u)=\left(\frac12+\frac12\cos(2u)\right)^2=\frac14+\frac12\cos(2u)+\frac14\cos^2(2u)$$$$\phantom{\cos^4(u)}=\frac14+\frac12\cos(2u)+\frac14\left(\frac12+\frac12\cos(4u)\right)$$$$\phantom{\cos^4(u)}=\frac38+\frac12\cos(2u)+\frac18\cos(4u)$$sodass wir das Integral sofort hinschreiben können:$$I_1=\left[\frac38u+\frac14\sin(2u)+\frac{1}{32}\sin(4u)\right]_{\arctan(2)}^{\arctan(3)}$$$$\small\phantom{I_1}=\left(\frac38\arctan(3)+\frac14\cdot\frac35+\frac{1}{32}\cdot\left(-\frac{24}{25}\right)\right)-\left(\frac38\arctan(2)+\frac14\cdot\frac45+\frac{1}{32}\cdot\left(-\frac{24}{25}\right)\right)$$$$\phantom{I_1}=\frac38\left(\arctan(3)-\arctan(2)\right)-\frac{1}{20}$$
Damit lautet das Gesamtergebnis:$$I=\frac38\left(\arctan(3)-\arctan(2)\right)-\frac{1}{20}+\ln\left(\frac{\ln3}{\ln2}\right)\approx0,463772$$