Aus einer Aufgabensammlung:
Der geheimnisvolle Leuchtturm
Ein Leuchtturm steht auf einer kleinen Insel. Sein Lichtstrahl rotiert mit konstanter Winkelgeschwindigkeit und benötigt für eine vollständige Umdrehung genau 10 Sekunden.
Ein Schiff befindet sich 5 km vom Leuchtturm entfernt und bewegt sich mit einer Geschwindigkeit von 20 km/h direkt auf den Leuchtturm zu.
Die Intensität I des Lichtstrahls, den der Kapitän des Schiffes wahrnimmt, kann durch folgende Funktion beschrieben werden:
I(t) = A * sin²(ωt) / r²
A eine Konstante ist, die von der Stärke der Lichtquelle abhängt
ω die Winkelgeschwindigkeit des rotierenden Lichtstrahls ist
t die Zeit in Sekunden seit Beginn der Beobachtung ist
r die Entfernung des Schiffes vom Leuchtturm in Kilometern ist
a) Bestimme den Wert von ω in Radiant pro Sekunde.
b) Drücke r als Funktion von t aus. Beachten Sie, dass t=0 der Zeitpunkt ist, an dem das Schiff 5 km vom Leuchtturm entfernt ist.
c) Zeige, dass die Funktion I(t) umgeschrieben werden kann zu:
I(t) = K * sin²(ωt) / (5 - vt)²
Wobei K eine Konstante ist und v die Geschwindigkeit des Schiffes in km/s. Geben Sie den Wert von v an.
d) Für welches t erreicht I(t) seinen ersten Maximalwert nach t=0? Geben Sie Ihre Antwort in Sekunden auf zwei Dezimalstellen genau an.
2.
Eine Brücke wird durch eine Funktion modelliert, die ihre Höhe h(x) (in Metern) als Funktion des horizontalen Abstands x (in Metern) beschreibt:
h(x)=10+5sin(π/20*x)
Bestimme den Abstand zwischen den beiden Punkten, an denen die Brücke die gleiche Höhe wie ihre mittlere Höhe hat.
Bestimme die maximale und minimale Höhe der Brücke sowie die horizontale Entfernung zwischen diesen Punkten.
3.Gegeben ist die Funktion f(x) = a * sin(b(x - c)) + d, wobei a, b, c und d reelle Zahlen sind.
Folgende Informationen sind bekannt:
Die Amplitude der Funktion beträgt 3.
Die Periode der Funktion ist π.
Die Funktion schneidet die y-Achse bei y = 2.
Das erste Maximum der Funktion liegt bei x = π/6.
Aufgaben:
a) Bestimmen Sie die Werte von a, b, c und d.
b) Geben Sie die Nullstellen der Funktion im Intervall [0, 2π] an.
c) Berechnen Sie den Flächeninhalt zwischen der Funktion und der x-Achse im Intervall [0, π].
d) Für welchen Wert von x im Intervall [0, π] ist die Steigung der Funktion am größten? Begründen Sie Ihre Antwort.
4. Beweise Sie die folgende trigonometrische Identität für alle reellen Zahlen x, für die die Ausdrücke definiert sind:
(sin x + cos x)² + (sin x - cos x)² = 2