Richtig, wie obiger kommentar es gesagt hat war es gemeint.
Ich habe heute morgen einen Ansatz entwickelt und ihn ausgebaut, ganz grob geht der so:
Meine Annahme, dass für die Existenz des uneigentlichen Integrales die Funktion im Unendlichen gegen Null gehen muss war falsch:
Man formluliere eine Funktion f:[0,∞)→[0,∞) , in der um jedes n∈ℕ ein Dreieck der Höhe n mit der Grundseite n/(2*n³) gezeichnet wird (z.B. über geeignete Geradengleichungen für bestimmte Wertebereiche), überall sonst sei die Funktion 0.
Wie leicht zu zeigen ist, ist die Funktion stetig in jedem Punkt und damit Riemann-Integrierbar, das Integral ist einfach die Summe der Flächeninhalte der Dreiecke. Und diese Summe konvergiert bei den angegebenen Längenangaben.
Des weiteren ist die Funktion unbeschränkt, denn sei ein C∈ℝ gegeben, dann gibt es ein N∈ℕ, sodass für alle n>N gilt f(n)>C, was direkt aus der Funktionalgleichung folgt.