Aufgabe:
Sei \( f \) eine \( 2 \pi \)-periodische Funktion, zeige dass die Funktion \( g(x)=f(x-a) \) die Fourier-Koeffizienten \( c_{k}(g)=e^{-i k a} c_{k}(f) \) hat.
Bemerkung: Es kann einfachheitshalber angenommen werden, dass die Fourierreihe von \( f \) gegen \( f \) konvergiert, ist aber nicht notwendig.
Ansatz:
Ich kenne die Definition der Fourierreihe als:
\( f(t)=\frac{a_{0}}{2}+\sum \limits_{k=1}^{\infty}\left(a_{k} \cos (k t)+b_{k} \sin (k t)\right) \)
Wie komme ich auf die genannten Koeffizienten?