es gilt für genügend große \( n \):
\( \frac{k^n}{n!} = \prod_{i=1}^{n} \frac{k}{i} = \left( \prod_{i=1}^{k} \frac{k}{i} \right) \left( \prod_{i=k+1}^{n} \frac{k}{i} \right) \equiv K \prod_{i=k+1}^{n} \frac{k}{i} \).
Man sieht, dass \( K = \left( \prod_{i=1}^{k} \frac{k}{i} \right) \) eine Konstante ist.
Für \( \prod_{i=k+1}^{n} \frac{k}{i} \) gilt nun, dass es eine Nullfolge ist, denn
\( \prod_{i=k+1}^{n} \frac{k}{i} \leq \left( \frac{k}{n} \right)^{n-k} \leq \left( \frac{k}{k+1} \right)^{n-k} \stackrel{n \rightarrow \infty}{\longrightarrow} 0 \)
für genügend große \( n \) (\( n \geq k+1 \)).
Die Folge \( \left( \frac{k}{n} \right)^{n-k} \) ist sozusagen eine Majorante für die Folge \( \prod_{i=k+1}^{n} \frac{k}{i} \).
In einer Zeile geschrieben kann man es für genügend große \( n \) so formulieren:
\( \frac{k^n}{n!} = \left( \prod_{i=1}^{k} \frac{k}{i} \right) \left( \prod_{i=k+1}^{n} \frac{k}{i} \right) \leq\left( \prod_{i=1}^{k} \frac{k}{i} \right) \left( \frac{k}{k+1} \right)^{n-k} \rightarrow 0 \).
Schöne Grüße
Mister