SIN(x) = G / H --> G = H * SIN(x)
COS(x) = A / H --> A = H * COS(x)
Nun gilt ja
A^2 + G^2 = H^2
(H * COS(x))^2 + (H * SIN(x))^2 = H^2
H^2 * COS(x)^2 + H^2 * SIN(x)^2 = H^2
COS(x)^2 + SIN(x)^2 = 1
SIN(x)^2 = 1 - COS(x)^2
SIN(x) = √(1 - COS(x)^2)
SIN(x) = √(1 - (4/5)^2) = √(1 - 16/25) = √(25/25 - 16/25) = √(9/25) = 3/5