0 Daumen
569 Aufrufe

habe drei Gleichungen mit drei Unbekannten. Die Lösung der Gleichungen liegt mir vor, allerdings komme ich einfach nicht darauf, wie ich mit den drei Gleichungen richtig "umgehe", um auf das Ergebnis zu kommen.

Wäre super, wenn mir das jemand erklären könnte.

Es geht um folgende Gleichungen:

1.) a + 15 = 2 * (b + c)

2.) b + 15 = 3 * (a + c)

3.) c + 15 = 5 * (a + b)

Avatar von

2 Antworten

0 Daumen

a + 15 = 2·(b + c) --> a - 2·b - 2·c = -15

b + 15 = 3·(a + c) --> b - 3·a - 3·c = -15

c + 15 = 5·(a + b) --> c - 5·a - 5·b = -15

II + 3*I ; III + 5*I

- 5·b - 9·c = -60

- 15·b - 9·c = -90

II - I

- 10·b = -30 --> b = 3

Nun alles noch Rückwärts auflösen.

Avatar von 489 k 🚀
0 Daumen

a + 15 = 2 * (b + c)

b + 15 = 3 * (a + c)

c + 15 = 5 * (a + b)

Erst mal auf Normalform

-a + 2 b + 2c = - 15      * -5 zur 3. Zeile

-3a   +b   - 3c =  - 15   

-5a - 5b +  c = - 15
-------------------------------

-a + 2b + 2c = - 15      * -3 zur 2. Zeile

-3a   +b   - 3c =  - 15    

-15b -  9c =   60

--------------------------------

-a + 2b + 2c = - 15   

-5b   - 9c =   30     *(-1) und zur 3. addieren

-15b -  9c =   60
-----------------------------

-a + 2b + 2c = - 15   

-5b   - 9c =    30    

-10b         =   30

Jetzt von unten nach oben auflösen
Avatar von 289 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community