Aufgabe a)
(1) Bestimmen Sie die Nullstellen und die Koordinaten der Extrem- und Wendepunkte der Funktion \( f_{a} \) in Abhängigkeit von \( a \).
(2) Begründen Sie, dass \( T_{e}\left(-\frac{1}{a} |-a^{-2} e^{-1}\right) \) ein globaler Tiefpunkt der Funktion \( f_{a} \) ist.
Aufgabe b)
In Aufgabe a) (1) ergibt sich der Wendepunkt \( W_{a} \left(-\frac{2}{a} |-2 a^{-2} e^{-2}\right) \)
(1) Zeigen Sie: Für die Länge \( l(a) \) der Strecke \( \overline{T_{a} W_{a}} \) gilt \( (l(a))^{2}=\frac{1}{a^{2}}+\frac{k}{a^{4}} \) mit \( k=(e-2)^{2} e^{-4} \)
(2) Untersuchen Sie, ob die Länge \( l(a) \) der Strecke \( \overline{T_{a} W_{a}} \) extremal werden kann.
(Hinweis: Ohne Beweis kann benutzt werden: \( l(a) \) ist genau dann extremal, wenn
\( (l(a))^{2} \) extremal ist.)
Aufgabe c)
(1) Begründen Sie mit Hilfe von Integrationsverfahren, dass die Funktion \( \mathrm{F}_{\mathrm{a}} \) mit der Gleichung \( F_{a}(x)=\frac{1}{a^{2}} e^{a x} \cdot\left(x-\frac{1}{a}\right), x \in \mathbb{R}, \) eine Stammfunktion der Funktion \( f_{a} \) ist.
(2) Der Graph der Funktion \( f_{a} \) schließt mit der \( x \) -Achse im III. Quadranten eine unbegrenzte Fläche ein. Zeigen Sie, dass diese Fläche den Inhalt \( I_{o}=\frac{1}{a^{3}} \) besitzt.