f(x) = ax3 + bx2 + cx + d
f'(x) = 3ax2 + 2bx + c
Die Bedingungen
f(0) = a*03 + b*02 + c*0 + d = 0 => d = 0
f'(0) = 3a*02 + 2b*0 + c = 0 c => 0
f(x) = ax3 + bx2
f'(x) = 3ax2 + 2bx
f(1) = a*13 + b*12 = -0.19
f(2) = 3a*22 + 2b*2^2 = -0.72
a + b = -0.19
12a + 8b = -0.72
a + b = -0.19 | * 8
8a + 8b = -0.76
12a + 8b = -0.72 | abziehen
------------------------
-4a = -0.04
a = 0.01
a + b = -0.19
0.01 + b = -0.19
b = - 0.2
f(x) = 0,01·x3 - 0,2·x2