f(x) = ax3 + bx2 + cx + d 
f'(x) = 3ax2 + 2bx + c
Die Bedingungen
f(0) = a*03 + b*02 + c*0 + d  = 0   => d = 0 
f'(0) = 3a*02 + 2b*0 + c  = 0   c => 0
f(x) = ax3 + bx2 
f'(x) = 3ax2 + 2bx 
f(1) = a*13 + b*12  = -0.19 
f(2) = 3a*22 + 2b*2^2  = -0.72
a  + b   = -0.19 
12a  + 8b  = -0.72
a  + b   = -0.19  | * 8
8a  + 8b   = -0.76 
12a  + 8b  = -0.72  | abziehen
------------------------
-4a = -0.04
a = 0.01
a  + b   = -0.19  
0.01  + b   = -0.19  
b = - 0.2
f(x) = 0,01·x3 - 0,2·x2