z^2=1+r^2
r^2<=4
|z|=sqrt(1+r^2)
z=sqrt(1+r^2), weil z>=0
Parametrisierung:
x=r*cos(φ)
y=r*sin(φ)
z=sqrt(1+r^2)
φ∈(0,2π)
r∈(0,2)
dA=r*√(r^2/(1+r^2)+1)drdφ
I=∫z*dA=∫√(1+r^2)*dA
=2*π*∫02 r*√(1+r^2)*√(r^2/(1+r^2)+1)dr
x=r^2
I=π*∫√04 √(1+x)*√(x/(1+x)+1)dx
=π*∫√04 √(1+x)*√((2x+1)/(x+1))dx=π*∫04 (2x+1)^{1/2}dx=π*26/3