0 Daumen
1k Aufrufe

Für die partielle Integration bedient man sich ja der Produktregel.

int = Integral

(u * v)' = u' * v + u * v'    | int

u * v = int(u' * v) + int(u * v') 

Nun haben wir das Integral für u*v weil u*v = !

Nun aber zieht man aber einen Summanden auf die andere Seite:

int(u' * v) = u*v - int(u * v') 

Wieso kann man nun das Integral von u*v berechnen, wenn man offensichtlich das Integral von (u' * v) berechnet? Ich starre stundenlang die Formel an, und es ergibt bei mir logisch keinen Sinn, wo ist mein Denkfehler? Ich denke, wenn x = 3+2 ist, ist doch x-2 = 3. 5 ist doch hier auch ein anderer Wert als 3, wie man hier es aber mit der Aquivalenzumformung tut?

Für Hilfe bin ich dankbar. 

MfG

Avatar von

2 Antworten

0 Daumen

f(x) = x * e^x

Wir integrieren mal partiell

∫ x * e^x dx = x * e^x - ∫ 1 * e^x dx = x * e^x - e^x = (x - 1) * e^x

Also wenn wir mal die Ableitung bilden

[(x - 1) * e^x]' = e^x + (x - 1) * e^x

Integriert man nun beide Seiten gilt

(x - 1) * e^x = ∫ e^x dx + ∫ (x - 1) * e^x dx

oder umgeformt

∫ (x - 1) * e^x dx = (x - 1) * e^x  - ∫ e^x dx

Das ist jetzt aber genau das was man sich ja oben zunutze gemacht hat.

Avatar von 489 k 🚀
0 Daumen

Ziel ist es nicht das Integral von u*v zu berechnen, sondern von u'*v. Deshalb hat man dieses Integral alleine auf eine Seite gebracht, damit man eine Rechenvorschrift dafür erhält.

Addieren eines Terms, auch von Integralen, ist eine Äquivalenzumformung.

Avatar von 37 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community