f: x^2 = 6·y --> y = x^2/6
g: x^2 + 36 = 12·y --> y = x^2/12 + 3
d(x) = f(x) - g(x) = x^2/6 - (x^2/12 + 3) = x^2/12 - 3
D(x) = x^3/36 - 3·x
Nullstellen d(x) = 0 --> x = -6 ∨ x = 6
∫ (-6 bis 6) (x^2/12 - 3) dx = D(6) - D(-6) = -24
Die Fläche beträgt damit 24 FE.