Beh.: $$ \sum_{k=1}^{n}{k}=\frac { n(n+1) }{ 2 } $$
IA:...
IV: ∃n∈ℕ, n≥1:
$$ \sum_{k=1}^{n}{k}=\frac { n(n+1) }{ 2 } $$
Ist diese Induktionsvoraussetzung korrekt formuliert?
Ja, das ist korrekt.
Die Induktionsvoraussetzung muss für alle n<n+1 gültig sein. Dass es ein n gibt, ist der Induktionsanfang.
Wenn sich aus der Gültigkeit einer Formel für n die Gültigkeit der Formel für n+1 nachweisen lässt, ist der Induktionsschluss erbracht.
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos