bringen wir die Brüche erstmal auf einen gemeinsamen Nenner, um zu sehen, was dann passiert:
1/(x+1) - 2/(x+2) + 1/(x+3) = 0
(x+2)(x+3)/[(x+1)(x+2)(x+3)] - 2(x+1)(x+3)/[(x+1)(x+2)(x+3)] + (x+1)(x+2)/[(x+1)(x+2)(x+3)] = 0
Wir multiplizieren beide Seiten der Gleichung mit eben diesem Hauptnenner, es bleibt:
(x+2)(x+3) - 2(x+1)(x+3) + (x+1)(x+2) = 0
Ausmultiplizieren der Klammern:
x^2 + 5x + 6 - 2x^2 - 8x - 6 + x^2 + 3x + 2 = 0
Zusammenfassen:
x^2 - 2x^2 + x^2 + 5x - 8x + 3x + 6 - 6 + 2 = 0
2 = 0
Offensichtlich unwahr, deshalb keine Lösung in ℝ
Besten Gruß