$$z=(3+2i)^{1+i}\\ [\text{allg:}a^z=e^{z\space log(a)}\cdot e^{2Kπiz}\\ e^{z\space log(a)}=\text{Hauptzweig}]\\ a=3+2i\\ z=1+i⇒\\ z=e^{(1-i)\cdot log(3+2i)}\\ z=e^{(1+i)(log(\sqrt{13})i\space arctan(\frac{2}{3}))}\\ z=e^{(1+i)(log(\sqrt{13})+i\space0,588)}\\ z=e^{(log(\sqrt{13)}+i0,588+i\space log(\sqrt{13)}-0,588)}\\ z\approx e^{0,128+i1,87-0,588}\\ z\approx e^{0,69+i1,87}\\ z\approx e^{0,69}\cdot e^{i1,87}\\ z\approx 1,99\cdot(cos(1,87)+i \space sin(1,87))\\ z\approx 1,99(cos(107,14°)+i\space sin(107,14°))\\ z\approx -0,59 + i\space 1,91$$