Ich habe Probleme mit der folgenden Wachstumsaufgabe:
Der Riesenbärenklau ist eine Pflanze, die ursprünglich im Kaukasus beheimatet war und sich seit dem 19. Jahrhundert auch in Mitteleuropa ausgebreitet hat. Aufgrund ihres schnellen Wachstums stellt sie eine Gefahr für die heimischen Pflanzenarten dar und wird daher bekämpft. Bereits 12 Wochen nach dem Keimen misst sie 1 Meter. Nach weiteren 8 Wochen hat sie oft eine Höhe von 3,20 Meter erreicht.
a) Bestimmen Sie die Funktionsgleichung für das Wachstum des Riesenbärenklaus, wenn es durch die Funktionsgleichung f(t) = a·ekt (t in Wochen nach dem Keimen, f(t) in Metern) beschrieben werden kann.
b) Begründen Sie, dass die Funktionsgleichung f(t)=a·ekt nur für eine begrenzte Zeit das Wachstum der Pflanze beschreiben kann
zu a): wie kann ich hier a bestimmen? Ein Anfangsbestand ist ja nicht gegeben und wenn man davon ausgeht, dass es keinen Anfangsbestand gibt, müsste a ja 0 sein, was ja auch keine Sinn ergibt, oder irre ich mich?
zu b) kann mir das jemand erklären?