nach Giuseppe Peano beträgt der Fehler
$$| E(f) | \le \frac{b-a}{2880} h^4 \max_{a \le x \le b} \left| f ^{(4)}(x)\right|$$
Hier ist \(a=1\) und \(b=2\) und \(f=\frac{1}{x}\)
$$f ^{(4)}(x) = \frac{24}{x^5} \quad \Rightarrow \max_{a \le x \le b} \left| f ^{(4)}(x)\right| = 24$$
Damit lässt sich der minimal notwendige Wert für \(h\) berechnen. Aus der Forderung \(|E(f)| \le 0,5 \cdot 10^{-6}\) folgt
$$\frac{b-a}{2880} h^4 \cdot 24\le 0,5 \cdot 10^{-6} \quad \Rightarrow h \le 0,088$$
$$N=\left \lceil \frac{1}{h} \right \rceil=12$$
Du benötigst also \(2N+1=25\) Funktionswerte um \(\ln{2}\) sicher auf 6 Nachkommastellen genau zu berechnen. Die Genauigkeit wird aber besser sein, da dies nur eine Worst-Case-Annahme ist..
Gruß Werner